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Global Emissions Pathways IPCC SR1.5
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Source: IPCC SR1.5 (2018)
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GHG emissions (GtCO,e/year)
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Source: UN EGR 2017, chpt. 7, Fig.
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Different pathways & mitigation McC
strategies could limit warming to 1.5°C

Scenario 1
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Source: Fuss et al. 2020
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Carbon cycle impact of Carbon Dioxide Removal

A  Climate Change B Bioenergy

Fossil fuel

Emissions
=1
D  Bioenergy +CCS (BECCS) C  Carbon Capture & Storage (CCS)

Biogenic Land Ocean
Emissions

Source: Smith et al. 2016
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Direct Air Carbon Capture & @@
Storage (DACCS)
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Source: Smith et al. 2016
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2050 costs and potentials of removal options
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Source: Fuss et al. 2018
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Non-CO2 other

Different zero GHG pathways
FE Non-CO2 Agriculture lead to different levels of

5000 = remaining emissions and
=~ Residential absorption of GHG emissions
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Source: COM/2018/773 final



CCS — a Swedish example: point sources of CO, pcc

CO, emissions between 100 and 500 kt

Total emissionsin kt
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Source: Fuss & Johnsson (2021)
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CO, emissions > 500 kt
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CCS — a Swedish example. 27 large industrial CO, point sources (>500
ktCO,/a) E

e
2 Steel plants
+ 1 CHP plant

Courtesy of Filip Johnsson
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CCS — a Swedish example: 27 large industrial — pcc "N
point sources of CO, emissions (>500 ktCQO,/a)
Marginal Abatement Cost Curve for CCS and BECCS
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Source: Johnsson et al. (2020), Slide courtesy of Filip Johnsson
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Accelerated models of innovation
_ "’"' 1957 Historical trend 2017 2040 ""‘;.":"
Solar PV I . "" ”l’
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Source: Nemet et al. 2018, Nemet 2019
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Knowledge Gaps in Innovation, Public Perception
& CDR Policies
- Increasing knowledge base on
CDR approaches. °° 600 NETs literature by innovation stage, ]
- Removal potentials = ol I o )
- Costs, side effects 2 e B B Demand factors
- Systems integration =T I ]
0k — . — I:I l:l .
- ... but a gaping hole in R&D\ > Demos »Scale-up » Niche -, Demind -, uble )
knowledge when it comes to Feedback <
innovation, public perception
and policy

- Knowledge concentrated on supply side factors, almost nothing on public
acceptability

- National net-zero legislation requires knowledge on policy and
governance

- Traditional, one-size-fits-all innovation models not applicable to CDR
upscaling challenge

Source: Nemet et al. (2018)
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Rationales for CO, utilisation
* Why utilise CO,?
+ Potential reduction of net costs of
emissions reductions or removals CDR CCuU

ex-situ mineral

- Potential facilitation of CCS technologies
carbonation

- Use a cheaper/cleaner feedstock than
conventional hydrocarbons

BUT: CO, utilisation can...

1. increase CO, emissions (e.g. through
non-decarbonised energy input,

potentially EOR) flue gas CCS

2. have no net impact on CO,, but
increase GHG emissions (potentially

urea)
3. reduce CO2 emissions without removing CO2 from the atmosphere on a net basis (potentially fuels)

4. remove CO2 from the atmosphere on a net basis (potentially BECCS)

*  ‘Net-zero’ legislation should consider CO2 utilisation and storage incentive frameworks, but incentivisation should
be on CO2 storage and emission reduction via utilisation - not utilisation per se.

Source: Hepburn et al. (2019)



Towards an EU market for CDR...

In principle, equal prices for emissions and CDR. But: price
differentiation in case of market failure, externalities and technology-
specific distortions

Potential cost advantages of a globally-oriented CDR promotion. But:
EU focus can initially make sense, e.g. due to learning effects and
management of negative side effects.

Innovation acceleration: long-term announced minimum CO, prices
for CDR + a regular review process.

Precise monitoring of removals and verification of permanently
stored carbon quantities 1s key.

Instruments: (1) individual measures that relate to individual CDR
technologies or practices, (2) price-based approaches, supplemented
by additional regulations for specific technological, ecological or
economic aspects

Addressing unwanted interaction with climate change mitigation:
separate targets (McLaren et al. 2019), reverse auctioning (Sweden),

BECCS and DACCS within the EU ETS (Rickels et al.,
forthcoming).



