

Removing CO₂ from the atmosphere?

Close, but incomplete...

Removing CO₂ from circulation in the *active carbon cycle*, and stewarding its storage in a monitored carbon stock.

Removal is more completely described as the end-to-end process of "carbon removal and storage"

Emission reduction

through avoided emission (no apparent CO₂ storage)

Introducing the Carbon Takeback Obligation

Carbon Takeback / Storage Obligation

 The bulk of the benefits (profits) from emissions accrue upstream at the wellhead (fossil fuel extraction), but few climate policies harness this value.

• The most expensive mitigation we'll need to stop climate change is permanent carbon storage, but *conventional climate policies fail to incentivise it before it's too late.*

The Carbon Takeback / Storage Obligation links these two insights, requiring the permanent storage of CO₂ as a condition of extracting more carbon from the Earth.

The only sustainable way to stop fossil fuels from causing global warming: high-durability CO₂ disposal

CO₂ energy and industrial process emissions in cost-effective 1.5°C and <2°C scenarios

Blue lines: 1.5°C (SSPx-19) and <2°C (SSPx-26) scenarios

Red lines: Trajectory delivered by a Carbon Takeback Obligation

Jenkins et al, 2021

Tracking progress to Net Zero CO_2 emissions: Emissions = Production – Storage \rightarrow 0

Blue lines: 1.5°C (SSPx-19) and <2°C (SSPx-26) scenarios Red lines: Trajectory delivered by a Carbon Takeback Obligation

Jenkins et al. 2021

Tracking progress to Net Zero CO_2 emissions: Emissions = Production – Storage \rightarrow 0

Blue lines: 1.5°C (SSPx-19) and <2°C (SSPx-26) scenarios

Red lines: Trajectory delivered by a Carbon Takeback Obligation

Jenkins et al, 2021

Tracking progress to Net Zero CO_2 emissions: Stored Fraction = Storage/Production \rightarrow 100%

Blue lines: 1.5°C (SSPx-19) and <2°C (SSPx-26) scenarios

Red lines: Trajectory delivered by a Carbon Takeback Obligation

Jenkins et al, 2021

So it is clear what is needed: why are we taking so long to develop CO₂ storage?

We can halve emissions with very little use of CO₂ storage, but we can't get to net zero...

From physics to policy

Carbon Takeback basics:

- Extractors & importers (or suppliers) must permanently store an escalating fraction of the fossil carbon contained in their products
- Carbon Storage Units (CSUs) can be traded among obliged entities
- Stored fraction escalation dictated by policy:
 - Quadratic increase to 100% by 2050
 - OR driven by warming itself.... 100% by the time 1.5C reached

The surprising economics of Carbon Takeback

- Initially low stored fraction...
- ...very low initial cost of compliance, while still delivering permanent carbon storage!

Mitchell-Larson and Allen 2021, Prosets: making continued use of fossil fuels compatible with a credible transition to net zero.

The surprising economics of Carbon Takeback

- Initially low stored fraction...
- ...very low initial cost of compliance, while still delivering permanent carbon storage!
- Blended cost of compliance gradually approaches the cost of DACCS

Mitchell-Larson and Allen 2021, Prosets: making continued use of fossil fuels compatible with a credible transition to net zero.

Why adopt Carbon Takeback?

- PREDICTABLE. Pathway to net zero, market discovers its own least-cost means of permanent CO₂ storage.
- **SIMPLE**. Light regulatory burden.
- **NO TAX**. No direct taxpayer subsidy, price support mechanisms, or taxes.
- **AFFORDABLE**. Initially high costs of geological storage (\$50 \$100/tCO2 depending on source) spread over the full volume of fossil fuels sold. Desired outcome (permanent storage in line with climate requirement) assured with a small addition to carbon price.
- SAFE. CO₂ is stored safely and permanently, primarily underground and offshore, reducing pressure on ecosystems and aboveground land uses.
- ALIGNED WITH PUBLIC SENTIMENT. Bake in the cleanup costs into a still profitable industry!

Appendix

Global warming has passed 1.1°C, and rising at over 0.2°C per decade

Figure SPM.1 from the 2018 IPCC Special Report on 1.5°C

Global warming has passed 1.1°C, and rising at over 0.2°C per decade

To meet Paris goals, we need to stop global warming before the world stops using fossil fuels

Lignite mining in Anthochori, Greece, 2007

To meet Paris goals, we need to stop global warming before the world stops using fossil fuels

Tracking progress to Net Zero CO_2 emissions: Emissions = Production – Storage \rightarrow 0

Blue lines: 1.5°C (SSPx-19) and <2°C (SSPx-26) scenarios Jenkins et al, 2021

The surprising economics of Carbon Takeback

- Suppose CO₂ disposal costs
 - \$50/tCO₂ stored initially (CO₂ captured at source),
 - \$250/tCO₂ at net zero (point sources + direct air capture).
- Cost per tCO₂ of fossil carbon *sold* = *S*(50+200*S*) where *S* is stored fraction.
- This is equivalent to a carbon price of:
 - \$ 0.52 / tCO₂ at S=1% (early 2020s)
 - \$12.00 /tCO₂ at S=15% (early 2030s)
 - -\$250 /tCO₂ at S=100% (2050s)

