# SUPPORTING THE EU COMMISSION WITH DEVELOPING A CARBON REMOVAL CERTIFICATION MECHANISM (CRC-M)

WEBINAR "CERTIFICATION OF CARBON REMOVALS: THE FIRST STEP TOWARDS AN EU MARKET MECHANISM FOR NEGATIVE EMISSIONS"









### BACKGROUND – NET-NEUTRALITY & GREEN DEAL



#### Green Deal – CRC-M to close gaps

#### **Circular Economy Action Plan**

• "To incentivise the uptake of carbon removal and increased circularity of carbon, in full respect of the biodiversity objectives, the Commission will explore the development of a **regulatory framework for certification of carbon removals** based on robust and transparent carbon accounting to monitor and verify the authenticity of carbon removals."

#### Farm-to-Fork Strategy

- "farming practices that remove CO<sub>2</sub> from the atmosphere contribute to the climate neutrality objective and should be rewarded, either via the common agricultural policy (CAP) or other public or private initiatives (carbon market)."
- "Robust certification rules for carbon removals in agriculture and forestry are the first step to enable payments to farmers and foresters for the carbon sequestration they provide."

### PROJECT STRUCTURE





## TYPES OF CO<sub>2</sub> SOURCES AND STORAGE SPHERES

|                        | CO <sub>2</sub> source:                                                                                                                                                                |                                                                                                      |                                                     |                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|
|                        | ATMOSPHERIC<br>CARBON                                                                                                                                                                  | BIOGENIC CARBON*                                                                                     | FOSSIL CARBON                                       | 14<br>solutions |
| $CO_2$ storage sphere: |                                                                                                                                                                                        |                                                                                                      |                                                     |                 |
| GEOSPHERE              | <ul> <li>Direct Air Capture and<br/>Carbon Storage**</li> <li>Terrestrial Enhanced<br/>Weathering</li> </ul>                                                                           | <ul> <li>Bio-Energy with Carbon<br/>Capture and Storage**</li> </ul>                                 | <ul> <li>Carbon Capture and<br/>Storage*</li> </ul> |                 |
| BIOSPHERE              | <ul> <li>Afforestation</li> <li>Agro-forestry</li> <li>Blue Carbon</li> <li>Soil Carbon Management</li> <li>(Peatland Rewetting)</li> <li>Sustainable Forest<br/>Management</li> </ul> | • Biochar                                                                                            |                                                     |                 |
| TECHNOSPHERE           | <ul> <li>Direct Air Capture and<br/>Carbon Utilisation</li> </ul>                                                                                                                      | <ul> <li>Bio-Energy with Carbon<br/>Capture and Utilisation</li> <li>Biomass in buildings</li> </ul> | Carbon Capture and<br>Utilisation                   |                 |

Note: \* incl. Biogenic Waste-to-Energy \*\* covers geological storage (in depleted oil & gas fields or saline aquifer) and in-situ carbon mineralisation

Nature-Based Solutions (NBS)

## TASK 1 – EXISTING CRC MECHANISMS

| What                                            | A set of rules, requirements, and procedures to measure, verify, and reward carbon removals.                       |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Aims                                            | <ol> <li>Ensure consistent, high quality<br/>removals</li> <li>Facilitate uptake and<br/>implementation</li> </ol> |  |  |
| Australian Government<br>Clean Energy Regulator | LABEL BAS<br>CARB NE Verified Carbon<br>Standard                                                                   |  |  |
| Registry                                        | Moor                                                                                                               |  |  |
| New Zealand Governmentamong others              |                                                                                                                    |  |  |

| Certification mechanism consist of:                               |                                                                                                                                                                                    |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Governance                                                        | <ul> <li>Methodology approval</li> <li>Registries</li> <li>Transparency and conflict management</li> </ul>                                                                         |  |  |
| Scope, objective,<br>eligibility                                  | <ul> <li>Solutions covered</li> <li>Eligible participants (type, geographic)</li> </ul>                                                                                            |  |  |
| MRV: Measurement,<br>monitoring,<br>reporting and<br>verification | <ul> <li>Quantification methods</li> <li>Additionality (including baselines)</li> <li>Treatment of uncertainty</li> <li>Reporting and verification procedures</li> <li></li> </ul> |  |  |
| Sustainability<br>requirements                                    | <ul> <li>+/- externalities (e.g. biodiversity, water)</li> <li>Leakage</li> </ul>                                                                                                  |  |  |
| Permanence                                                        | Managing impermanence risks                                                                                                                                                        |  |  |
| Incentives, market<br>design                                      | <ul><li>Form of reward</li><li>Crediting period/timing</li></ul>                                                                                                                   |  |  |
|                                                                   | ENVIRONMENT Umwelt hundesamt                                                                                                                                                       |  |  |

### TASK 2 – INDICATIVE RESULTS REMOVAL SOLUTIONS

| Solution maturity:                  | NBS generally more mature than TBS, TBS cover large range of readiness levels                                                                                                                                                                                   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Removal potential:                  | Lack of estimates at EU level: globally, larger removal potential for NBS in the near future (especially afforestation), uncertain potential of TBS but potentially higher long-term removal potential                                                          |
| Costs:                              | Generally NBS <tbs although="" at="" costs="" decrease="" deployment="" expected="" now,="" scale<="" tbs="" th="" to="" with=""></tbs>                                                                                                                         |
| Permanence /<br>reversibility risk: | NBS have impermanence risk that must be managed (different potential solutions already exist),<br>end-of-life of CCU applications influence removal duration, TBS permanence risks are likely lower                                                             |
| Practical<br>challenges:            | NBS: mainly land competition; TBS: energy/material/infrastructure (and land, in particular where biomass is involved) demand influencing feasible locations, legal & product regulation aspects, and public acceptance                                          |
| Robust MRV:                         | Different coverage of carbon removal solutions in existing MRV rules at national (e.g. IPCC GL), installation/project-level (e.g. EU ETS, voluntary carbon market standards) and other guidelines (e.g. RED II). Existing MRV: NBS > TBS. Robust MRV: NBS < TBS |

### TASK 2 – INDICATIVE RESULTS REMOVAL SOLUTIONS

| Co-benefits potential:                     | Mainly for NBS: water/soil quality, biodiversity. CCU/CCS can reuse existing infrastructure and CCU fosters carbon recycling                                                                                               |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negative externalities<br>/ leakage risks: | Risks of direct and indirect land use change, biodiversity loss for NBS, and land-related TBS; high energy demand for several TBS (e.g. DACCS, CCU), potential negative impact on ecosystems & human health (e.g. for TEW) |
| Time perspective<br>and rate:              | One-off vs. annual rate of removals; immediate removals vs. removals delivered over time                                                                                                                                   |
| Actors involved and project scales:        | Different actor profiles and project scales across/within solutions, from pilot scale installations to large-scale installations, thousands of landowners for NBS                                                          |

No single solution stands out: all have their specific advantages, disadvantages and challenges



### TASK 3 – STAKEHOLDER INPUT

#### Main aims:

- Communicate and validate the project (interim) results
- Give stakeholders the opportunity to express views and share experience on a potential CRC-M

| Group discussions | Survey/<br>Questionnaire | Conference (tentative) |
|-------------------|--------------------------|------------------------|
|                   |                          |                        |



### TASK 4/5 – DEVELOP & ASSESS OPTIONS

#### Scope

Under what design conditions could Can different mechanism designs How should a CRC-M be organised different solutions be accommodate variable levels of (regulating body, registry,...)? accommodated? MRV / environmental integrity? What How should standards, procedures, implications might arise for existing What are the implications of methodologies etc. be managed? policies (e.g. national GHG certifying short-retention CCU How can admin costs be minimised? inventories)? applications? Or fossil CO<sub>2</sub>? How can a pilot phase help ramping What are the implications for EU What are acceptable approaches to up removals? fostering permanence and managing climate policies/instruments How could a CRC-M evolve to liability for carbon reversals? (coherence)? integrate new needs and solutions What might be the admin ...? for carbon removals? costs/burden (project developers)? ...? ...? • Develop Develop **Develop options Assess options** assessment assessment criteria methodology

**Certification rules** 

Cert.

rules

Governance

Scope

environment umwelt hundesamt

Governance

#### EXPECTED RESULTS

- Overview of existing carbon removal certification mechanisms and solutions as well as their main characteristics to inform designing a CRC-M
- Communication to and input from relevant experts and wider stakeholders
- Set of design options for an EU CRC-M, assessed for their advantages and disadvantages (environmental integrity, effectiveness, efficiency, coherence with existing climate policies,...)
- Results expected for Q1/2022



#### **CONTACT & INFORMATION**

Christian HELLER \_\_\_\_\_\_umweltbundesamt® christian.heller@umweltbundesamt.at



Umweltbundesamt www.umweltbundesamt.at Certification of carbon removals: the first step towards an EU market mechanism for negative emissions Webinar • 27.04.2021

